top of page

WEEK4

  • 作家相片: TANG HAORAN
    TANG HAORAN
  • 2024年3月12日
  • 讀畢需時 1 分鐘

两两线性回归

# 加载必要的库

library(ggplot2)

library(gridExtra)

# 读取CSV文件

df <- read.csv("C:/Users/11030/Desktop/HKtestno0.csv", header = TRUE)

# 创建输出文件夹的路径

output_folder <- "C:/Users/11030/Desktop/rall2"

if (!dir.exists(output_folder)) {

dir.create(output_folder)

}

# 获取所有的列名,假定它们都是数值型的列

column_names <- names(df)

# 对每对变量进行线性回归并绘图

for (i in 1:(length(column_names)-1)) {

for (j in (i+1):length(column_names)) {

# 拟合线性模型

model <- lm(reformulate(column_names[i], response = column_names[j]), data = df)

# 获取R平方值

r_squared <- summary(model)$r.squared

# 绘制散点图和拟合线

p <- ggplot(df, aes_string(x = column_names[i], y = column_names[j])) +

geom_point() +

geom_smooth(method = "lm", formula = y ~ x, color = "blue") +

theme_minimal() +

ggtitle(paste("Scatter plot of", column_names[j], "vs", column_names[i], "\nR-squared:", round(r_squared, 3)))

# 保存图像

file_name <- paste0(column_names[i], "_vs_", column_names[j], "_scatterplot.png")

ggsave(file.path(output_folder, file_name), plot = p, width = 5, height = 4, dpi = 300)

}

}

# 保存图像

file_name <- paste(column_names[i], "_vs_", column_names[j], ".png", sep = "")

file_path <- file.path(output_folder, file_name)

ggsave(file_path, plot = p, width = 6, height = 4)

}

}


最新文章

查看全部
WEEK13

Week 13: Wrapping up my journey of learning R programming. Consolidated my knowledge and practiced with various exercises. Feeling...

 
 
 
WEEK12

Week 12: Made significant progress in R programming. Explored advanced topics like data mining and machine learning. Excited to dive...

 
 
 

留言


Silver Team

©2024 Silver Team 版權所有。透過 Wix.com 製作的理想網站

bottom of page